Methods

We conducted two prospective phase 2 trials in

Methods

We conducted two prospective phase 2 trials in which patients with atypical EPZ-6438 cell line hemolytic-uremic syndrome who were 12 years of age or older received eculizumab for 26 weeks and during long-term extension phases. Patients with low platelet counts and renal damage (in trial 1) and those with renal damage but no decrease in the platelet count of more than 25% for at least 8 weeks during plasma exchange or infusion (in trial 2) were recruited. The primary end points included a change in the platelet count (in trial

1) and thrombotic microangiopathy event-free status (no decrease in the platelet count of >25%, no plasma exchange or infusion, and no initiation of dialysis) (in trial 2).

Results

A total of 37 patients (17 in trial 1 and 20 in trial 2) received eculizumab for a median of 64 and 62 weeks, respectively. Eculizumab resulted in increases in the platelet count; in trial 1, the mean increase in the count from baseline to week 26 was 73×10(9) per liter (P<0.001). In trial 2, 80% of the patients had thrombotic microangiopathy event-free status. Eculizumab was associated with significant improvement in all secondary end points, with

continuous, time-dependent increases in the estimated glomerular filtration rate (GFR). In trial 1, dialysis was discontinued in 4 of 5 patients. Earlier intervention with eculizumab was associated with significantly greater improvement in the estimated GFR. Eculizumab was also associated with improvement in health-related quality of life. No cumulative CP-868596 toxicity of therapy or serious infection-related adverse events, including meningococcal infections, were observed through the extension period.

Conclusions

Eculizumab inhibited complement-mediated

VEGFR inhibitor thrombotic microangiopathy and was associated with significant time-dependent improvement in renal function in patients with atypical hemolytic-uremic syndrome.”
“Triacylglycerols (TAGs) constitute a highly efficient form of energy storage. In seeds of angiosperms, they can act as a reserve of carbon and energy allowing to fuel post-germinative seedling growth until photosynthesis becomes effective. They also constitute the economic value of seeds in many crops. In the past years, extensive tools allowing the molecular dissection of plant metabolism have been developed together with analytical and cytological procedures adapted for seed material. These tools have allowed gaining a comprehensive overview of the metabolic pathways leading to TAG synthesis. They have also unravelled factors limiting oil production such as metabolic bottlenecks and light or oxygen availability in seed tissues. Beyond these physiological aspects, accumulation of TAGs is developmentally regulated in seeds. The oil biosynthetic process is initiated at the onset of the maturation phase, once embryo morphogenesis is achieved.

Comments are closed.