“Lowering the concentrations of free cortisol in depressed


“Lowering the concentrations of free cortisol in depressed patients may be an important prerequisite to prevent glucocorticoid-related sequelae of depression. We tested the hypothesis that the hypothalamus-pituitary-adrenal (HPA) system-dampening effects of venlafaxine and mirtazapine differ. We compared the course of morning (08.00h) and afternoon saliva cortisol (16.00h) in 42 mirtazapine- and 45 venlafaxine-treated depressed patients during a 1-week wash-out and a 4-week treatment period in a randomised open trial. Mirtazapine lowered afternoon cortisol from

week 1 to 4. In contrast, during the course of the entire treatment period, venlafaxine did not attenuate saliva cortisol concentrations. Treatment effects of mirtazapine on cortisol concentrations did not differ in remitters and non-remitters to treatment. High baseline cortisol concentrations, on the other hand, were related to an unfavourable course during venlafaxine treatment and patients remitting Necrostatin-1 clinical trial during venlafaxine treatment had significantly lower afternoon cortisol concentrations in saliva, when compared to non-remitting patients. Thus, mirtazapine and venlafaxine show different effects on HPA system activity as measured by saliva cortisol. This may be of relevance with regard to physical sequelae

of depression. (C) 2009 Elsevier Ireland Ltd. All rights reserved.”
“Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses buy LCL161 interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide

transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to JNJ-64619178 in vivo a significant downregulation of MHC-I expression at the cell surface through the product of ORFI, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.

Comments are closed.