Fuente de Oro was excluded of the PCoA because this location only presented one isolate. The genetic population structure of Xamwas correlated with the geographical origin of isolates in the Eastern Plains of Colombia Distance trees were constructed using AFLP and VNTR data to determine how genetic distances were distributed among current isolates and reference strains (Figure 3). Tree topologies showed a generalized clustering according to geographical origin of the isolates, but the composition of inner clusters changed between techniques. In most
selleck chemicals of the cases, the global behavior of isolates across the topologies was comparable, with only few exceptions. One of them was a small group of isolates from Orocué, which clustered together with isolates from La Libertad (Meta) when VNTRs were used. This grouping was not observed when AFLPs were used. Interestingly, both techniques revealed that most of the reference strains
tended to cluster with isolates from Orocué (Casanare) and La Libertad (Meta), which suggested that those strains presented a similar proportion of shared characters with strains coming from these two locations. This is supported by the fact that similar Selleck OICR-9429 Euclidean distances were obtained when reference strains were compared to the isolates from La Libertad and to the isolates from Orocué (data not shown). Figure 3 Distance trees generated with AFLP and VNTR data from isolates collected in Casanare and Meta. Unrooted distance trees were constructed with learn more the Neighbor-Joining algorithm
in SplitsTree version 4.12.3 A) Distance tree was constructed using four selective pairs of primers to amplify AFLP markers. B) Distance tree constructed using five VNTR loci. La Libertad: black; Granada: blue; Fuente de Oro: red; Orocué: green and reference strains: orange. We then evaluated if there were distinguishable genetic clusters of the Fossariinae pathogen in the Eastern Plains region. When isolates were assigned to estimate genetic clusters using AFLP markers, they were grouped in two well-differentiated genetic clusters (Figure 4A). Each genetic cluster was mainly conformed by isolates from the same location, suggesting that geographical distances influenced the designation of clusters. This observation was corroborated with a Mantel test that showed a positive correlation between genetic and geographical distances (R2 = 0.9302). On the other hand, five genetic clusters were estimated when isolates were characterized using VNTRs (Figure 4B). In the same way, K clusters grouped according to the origin of isolates but this was less evident than for the clusters generated by AFLPs. The fact that VNTRs detected new clusters is suggesting that those markers were able to distinguish an encrypted population structure that was not detected by AFLPs. Similarly to what was observed with AFLPs, VNTRs detected a genetic structure correlated with geographical location.